Inversion effects on mountain lee waves

نویسنده

  • S. B. VOSPER
چکیده

The effect of a sharp low-level temperature inversion on flow over a mountain is investigated via a series of two-dimensional idealized numerical model simulations. The main focus of the study is the effect of the inversion on the formation of lee waves, lee-wave rotors, low-level hydraulic jumps and the occurrence of wave breaking aloft. The idealized problem considered consists of an upwind velocity profile that is independent of height (above the boundary layer) and directed normal to an isolated two-dimensional ridge. The upstream stratification consists of a neutral layer immediately above the ground capped by a sharp temperature inversion. Above this, the atmosphere is stably stratified and the Brunt–Väisälä frequency is independent of height. Simulations were conducted for a range of inversion strengths (measured by the difference in potential temperature across the inversion) and inversion heights. The effect of both a free-slip and a no-slip lower boundary condition is investigated. Results show that, when the upwind Froude number (defined in the usual way for two-layer shallowwater flow) falls below a critical value, a short-wavelength resonant lee wave forms downwind of the mountain on the inversion. It is shown that both the critical Froude-number value and the wavelength of the lee wave are accurately predicted by linear theory. The lee-wave amplitude, however, can be significantly underestimated by linear theory if the wavelength is less than the hill length scale. In the case of a no-slip boundary condition, if the wave amplitude is sufficiently large, boundary-layer separation occurs underneath the wave crests and closed rotor circulations occur. In general, flow separation (and rotors) do not occur in the free-slip case. In both the free-slip and no-slip flows, as the Froude number decreases the lee wave is eventually replaced by a stationary hydraulic jump above the lee slope of the mountain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lee Waves on the Boundary-Layer Inversion and Their Dependence on Free-Atmospheric Stability

This study examines gravity waves that develop at the boundary-layer capping inversion in the lee of a mountain ridge. By comparing different linear wave theories, we show that lee waves that form under these conditions are most accurately described as forced interfacial waves. Perturbations in this type of flow can be studied with a linear two-dimensional model with constant wind speed and a s...

متن کامل

The Dissipation of Trapped Lee Waves. Part I: Leakage of Inviscid Waves into the Stratosphere

Leaky trapped mountain lee waves are investigated by examining the structure of individual linear modes in multilayer atmospheres. When the static stability and cross-mountain wind speed are constant in the topmost unbounded layer,modes that decay exponentially downstream also grow exponentially with height. This growth with height occurs because packets containing relatively large-amplitude wa...

متن کامل

Diagnosing Lee Wave Rotor Onset Using a Linear Model Including a Boundary Layer

A linear model is used to diagnose the onset of rotors in flow over 2D hills, for atmospheres that are neutrally stratified near the surface and stably stratified aloft, with a sharp temperature inversion in between, where trapped lee waves may propagate. This is achieved by coupling an inviscid two-layer mountain-wave model and a bulk boundary-layer model. The full model shows some ability to ...

متن کامل

Lee Waves and Mountain Waves ∗

Buoyancy perturbations develop when stably stratified air ascends a mountain barrier. These perturbations often trigger disturbances that propagate away from the mountain as gravity (or buoyancy) waves. Gravity waves triggered by the flow over a mountain are referred to as mountain waves or lee waves. Mountain waves sometimes reveal their presence through dramatic cloud formations, such as smoo...

متن کامل

A flow regime diagram for forecasting lee waves, rotors and downslope winds

The influence of a strong low-level temperature inversion on the occurrence of lee waves, rotors and hydraulic jumps has been investigated using high resolution numerical model simulations. The aim of the work is to develop tools for forecasting hazardous winds downstream of mountains. Two-dimensional simulations were conducted for a range of inversion heights and strengths and a fixed hill sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006